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NONLINEAR ELASTICITY OF DIATOMIC CRYSTALS

J. L. ERICKSEN

Mechanics Department, The Johns Hopkins University, Baltimore, Maryland

Abstract—We here explore symmetry considerations which seem to us relevant for simpler mechanical theories
of ideal diatomic crystals, using elasticity theory for illustrative purposes. These considerations differ from those
commonly employed in continuum mechanics, though the two approaches seem not to be incompatible. In
more microscopic views of crystals, similar ideas are encountered in discussions of slip or twinning.

1. INTRODUCTION

IN DEALING with nonlinear elasticity of crystalline solids, the practice has been to emulate
what is done in the theory of infinitesimal deformations, requiring the strain energy to be
invariant under one or another of the crystallographic groups. The conceptual basis for
this seems to me less than crystal clear. As we see it, the conventional treatment is only
appropriate for deformations which are small though not necessarily so small as to be
considered infinitesimal. As is discussed below, there is some reason to think that additional
symmetries are relevant for a theory of finite deformations. Previously, we [1] discussed
this for monatomic lattices. These are too degenerate to illustrate typical problems which
arise in polyatomic lattices. Diatomic lattices seem representative, so, for simplicity, we
restrict our attention to these.

According to our views, such materials are not solids, as the latter are defined by Noll[2].
That is, their isotropy group is not contained in the orthogonal group. Neither are they
fluids, in his sense. Said differently, their symmetry virtually forces them to exhibit pheno-
mena which would commonly be considered to be inelastic. Broadly speaking, inelastic
phenomena are commonplace in real crystals and there is a dearth of mathematical theory
to describe them. We feel that the ideas here presented should be of some help in remedying
this situation, though we do not claim to have in hand a theory adequate to describe their
behavior.

We begin by reviewing ideas inherent in the classical molecular theory of elasticity for
crystalst, then formulate a continuum analogue of this theory. With some reservations, it
can be forced into the mold of nonlinear elasticity theory. Here, our goal is to clarify how
the implied symmetry is to be accounted for, not to extract predictions from such theories.

2. LATTICES

By a monatomic lattice, we mean a set of points, with position vectors py (N = 1,2,...),
relative to some common origin, which are representable in the form

Py = nja,. (1)
t Stakgold [3] gives a more comprehensive survey.
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Here and below, Greek indices take on values 1, 2, 3, repeated indices indicating the usual
summation. In (1) the three lattice vectors a, are assumed to be linearly independent and
the n’s range over all rational integers. Such points may be thought of as the locations of
identical mass points, so that one is in no way distinguished from any other. The lattice
does not uniquely determine the lattice vectors, doing so only to within transformations
of the form

a, = mbag, 2

where the m’s are any rational integers such that
detmf = +1. {3)

Such m’s form a group %, group multiplication being the obvious matrix multiplication.
It or, more accurately, a group conjugate to it can be considered as the isotropy group for
such crystals, at least in the context of elasticity theory. Briefly, this describes the thesis
which we [1] previously expounded.

It is not unusual for crystals made up of a single kind of atoms to arrange themselves
in more complicated periodic structures. In the classical scheme, various possibilities are
included by regarding these structures as somewhat degenerate polyatomic lattices.

A diatomic lattice consists of two monatomic lattices, one differing from the other by a
uniform translation. Atoms in one may differ from those in the other. We here regard them
as distinguishable. If they are not, equation (5) should be modified to reflect the indistin-
guishability of pand —p.

If py and Py represent the two sets of position vectors, suitably labelled, one, say py,
is representable in the form (1), the other being represented by

Py = Py+D, (4)

the constant vector p denoting some translation which would bring the two into coinci-
dence. It is easily seen that the two lattices determine p only to within transformations of
the form

p=ptna, (5)

where the n’s are rational integers. Of course, there is the possibility of referring the two
lattices to different lattice vectors, related by transformations of the type (2), but we do not
require this flexibility.

It is common to impose geometrical restrictions to limit possible choices of a, and p,
for example demanding that p have the shortest possible length. Roughly, the reason we
don’t is that we envisage lattice distortions which need not preserve such relations.

In the classical molecular theory of elasticity, such models of crystals are supplemented
by special assumptions concerning deformations of the lattice, central force laws for the
atoms and definitions of strain energy or stress in terms of microscopic quantities. Con-
cerning deformation of diatomic lattices, the idea is as follows: we start with a lattice
referred to lattice vectors A, relative translation P, in static equilibrium. The lattice vectors
undergo a linear transformation

A, —a,=FA,  detF >0, (6)

F being identified with a macroscopic deformation gradient. It is envisaged that P will
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change into another constant vector p, though not necessarily that resuiting from the same
linear transformation. That is, in general,

P-»p#FP. (7)

For given F, the notion is that p will take on some value permitting each atom to be subject
to zero resultant force. Thus p is related to F in a complicated way, depending on the forms
of the atomic force laws. The hope is to obtain p as a smooth, single valued function of F,
reducing to P when F = 1. Cases normally considered involve small departures from a state
which is, in a suitable sense, stable. When one or another of the implied properties of p(F)
fails, it is almost a matter of definition that some instability will occur. With more general
polyatomic crystals, the situation is much the same, except that p is replaced by a set of
vectors. Of course, there is no analogous problem for the monatomic lattice. Elasticity
theory does not provide a good vehicle for discussing this type of question. Said differently,
there might be some merit in converting from atomic to continuum theory before facing
this question. Without doing the molecular calculations, it is fairly easy to see what type
of continuum theory should result. The conventional apparatus is designed to produce
theories of materials whose response is determined once it is known for homogeneous
deformation and constant ‘“‘polarization”. Our views on symmetry are geared to similar
theories, so one might well have reservations about applying them to theories less local in
character.
We now attempt to make these ideas more coherent and more specific.

3. CONTINUUM THEORY

As suggested above, we consider materials whose “state” is determined by four vector
fields, suggestively labelled as

P a,. (®)

We introduce a scalar function W, representing stored energy per unit mass

W= W(p,a,). ©9)
It is assumed to be objective
W(Rp,Ra,) = W(p,a,), (10)
for every rigid rotation
R™! = RT, detR = 1. {1

Here, classical molecular theory would imply that (10) also holds for improper orthogonal
transformations, i.e.

detR= —1. {12
Changes in a, are constrained by the requirement that they be derivable from fixed A,
and a smooth deformation

X - x(X) (13)
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as material vectors. That is
a, = FA, (14
where F denotes the usual deformation gradient

F = Vx, det F > 0. {135}

Throughout, material coordinates X are taken as independent variables, the usual practice
in elasticity. We can now write

W = W(p, F) = W(p. FA,). (161

To obtain equations of equilibrium, one possibility is to assume a principle of virtual
work such as applies to nonlinear clastostatics,

(SJ;)WCIV: é)t.ﬁde%»Jf‘&de{ (17)

the integration extending over a fixed reference configuration, with mass density p. Here
t and f have the usual interpretations as surface and body forces. Though we won't, we
could generalize this to include a generalized body force doing work m changing p, possibly
of some relevance in cases when electromagnetic fields are imposed. The only novelty in
{17) involves the occurrence of p, which is to be varied independently. We then get the
equilibrium equations

W
f,{,v, -0, (18)
p
V. T4+f=0, {19)
oW
T=p_. 20
P aF (20}

plus natural boundary conditions of traction type, which we do not require. Here, (18)
is analogous to the equilibrium equation arising in molecular theory, to be solved for p in
terms of F. Formally, suppose {18} is satisfied by a certain smooth function

p = p(F). 21
With (10), there is no loss in generality in assuming it is objective
p(RF) = Rp(F). (22
With this, we can write
W = W(F) = W[p(F),F] (23)
with
WRF) = W(F). {24}
Then, because {18) holds,
oW oW
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We then arrive at elasticity theory. Of course, there is the possibility of nonuniqueness of
solutions of (18) for p which could lead to different determinations of W, etc.

We should now face the question of what invariance requirements should be imposed
on W, other than (10), to account for material symmetries, presuming we are concerned
with the diatomic crystals described before. Presumably, these should derive from the group
obtained by combining (2), (5) and (10). To sum up, we should single out some subgroup,
if not the entire group of transformations represented by

a, — Rmfa,, (26)
p = R(p+na,), 27

where the m’s and n’s are rational integers and
detmf = +1, R ! =R, detR = 1. (28)

In writing (10), we have already assumed one subgroup applies, that with mz = 3, n* = 0
and det R = 1. Some, but not all of the extended group of transformations can be accom-
plished by continuously varying p and a,, keeping the a, linearly independent. Those that
can are characterized by the condition

detRdetm? = 1. (29)
If R be restricted as in (11), (29) would then give
detmf = 1. (30)

For theories of such continuous variations, such as we consider, such restrictions do not
seem entirely unnatural and there might well be differences of opinion as to which choice
to make. Similarly, in the theory of crystallographic groups, there is occasional difference
of opinion as to whether to take these to be subgroups of the orthogonal or the proper ortho-
gonal group. If there is any other sensible reason to restrict the group, it escapes me. The
remaining discussion applies to the full group or to restrictions deriving from (11) and
(30). By itself, (29) is a bit awkward, for the possible subsets of m’s and R’s do not neatly
divide into two separate groups. This induces some concern, for the group is much larger
than that which has been used, with success, in the theory of infinitesimal deformations.
However, the two are not as different as might first appear. In general, as represented by
(26) and (27), the difference between a,, p and a,, p is not infinitesimal. Because of the
discrete nature of the group, a nonzero difference is not easily converted to an infinitesimal
difference. However, in special cases, the two sets of vectors need not differ at all. That is,
for special choices of the vectors and certain transformations,

a, = Rmfa,, (31)

p = R(p+na,). (32)
For fixed a, and p, such transformations clearly form a subgroup. From (31),

mba, = RTa,, (33)

whence follows that the subgroup of m’s form a group conjugate to a subgroup of the ortho-
gonal group, the one which we would identify as the crystallographic group appropriate
for this structure and configuration. With this hint, and what is discussed below, the reader
might judge for himself whether our proposal is inconsistent with experience.
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Reconsidering finite deformations, we use (13) to write
Rmfa; = RmiFA, = RFm/A, = RFMA,, (34
where M is the linear transformation such that
MA, = miA,. {35)

The slightly ambiguous subgroup 4 represented by the m’s can thus be thought of as
applying to the reference lattice vectors. As the m’s range over .%;, the M’s range over «
group % conjugate to it. Said differently, they are but different representations of the same
abstract group. Of course the form of the M’s will be different for different choices of the
reference configuration, as reflected in differences in the A,.

Because of the invariance assumed, the solution of (18) indicated in (21) cannot be
unique. For example, we can always add to p integral multiples of lattice vectors. However.
again because of the assumed invariance of W, such different values of p, required by
symmetry, yield the same value of W. Of course there remains the possibility of nonunique-
ness of a less trivial character, possibly leading to a multi-valued W. To correlate with
elasticity theory, we must somehow gloss over this problem. The assumed invariance then
translates to W in the form

W(RFM) = W(F), Me%. (36)

That s, % is at least contained in the isotropy group. It is easily seen that it is not a compact
group, hence cannot be a subgroup of the orthogonal group. This isotropy group is no
different from that which we [{] previously proposed for monatomic crystals. Similar
arguments suggest it should apply also to polyatomic crystals. It is only in an abstract
sense that they exhibit this common symmetry, since the form of the matrices depends on
the form of the vectors A, and, of course, the form of W is expected to be different
for different crystals. The situation is somewhat similar to that occurring in isotropic
materials, which appear to be anisotropic when referred to most stressed configurations.
The group % has a finite set of generators, which can be obtained by applying a suitable
similarity transformation to the generators of /] described in [1], where some consequences
of this symmetry are discussed in a simple situation. With the rather likely possibility that
W is multi-valued, (36) would still hold, in the sense that the set of values of Wwould be
transformed into itself by the indicated transformations. Of course, we are then somewhat
outside the realm of elasticity theory. The system (18)-(20) seems preferable for studying
such possibilities.

Here, we have done little more than attempt to motivate and explain our proposed
treatment of symmetry, leaving considerable room for work to be done in exploring its
implications. I am firmly convinced that, by exploring these, we will gain a better under-
standing of the behavior of crystalline solids.
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AGcrpakT—MCnonb3ys A8 WAMOCTPALUN TEOPHH YIIPYTOCTH, KCCAEAYIOTCA COOOpaXeHns CUMMETPHH,
KOTOpBIE MOTYT OKa3aTbC YMECTHBIMM ISt MIPOCTbIX MEXAHHUYECKHX TEOPHH MICANbHBIX AUATOMHbIX
KPHCTa/IOB., DTH COOOpaXXeHUs PA3HATCA OT TeX, KOTOPbIMH MOJb3YIOTCA B MEXAHUKE CILIOWHON Cpeabl,
HECMOTPA HAa TO, YTO 3TH AB& NOAXOAbI HE BbIAAIOTCH ObITB HecoBMecTumbiMu. Ilpu Gonee Mukpo-
CKONYYECKOH TOYKE 3peHUs, MOAOOHbBIE Kacu BCTPEYAOTCA B OOCYKACHUAX CKOJILXKEHUS WM ABOWKOBOIO
cpacTaHus KPUCTAJJIOB,



